Annual Report

# The surveillance programme for avian influenza (AI) in wild birds in Norway in 2019





## The surveillance programme for avian influenza (AI) in wild birds in Norway 2019

#### Content

| Summary                | 3 |
|------------------------|---|
| Introduction           | 3 |
| Aims                   | 3 |
| Materials and methods  | 3 |
| Sampling               | 3 |
| Analyses               | 4 |
| Results and discussion | 4 |
| References             | 6 |
|                        |   |

Authors Siri Kulberg Sjurseth, Knut Madslien, Britt Gjerset, Chiek Er Commissioned by Norwegian Food Safety Authority



ISSN 1894-5678

© Norwegian Veterinary Institute 2020

Design Cover: Reine Linjer Photo front page: Colourbox

#### Summary

Surveillance in 2019 did not detect highly pathogenic avian influenza infection in wild birds.

#### Introduction

The Norwegian Food Safety Authority is responsible for implementing the active surveillance programme for avian influenza (AI) in wild birds. The programme started in 2005 and is based on virological investigations in presumably healthy, live or hunted birds. The Norwegian Veterinary Institute planned, conducted the laboratory investigations and composed this annual report. The programme has been running from 2005-2007, from 2009-2010, and from 2016 and onwards.

Being widespread in birds, AI viruses are highly contagious and can evolve rapidly by mutations. Wild waterfowl species such as ducks, geese, swans, waders and gulls are the natural reservoirs for all low pathogenic influenza A viruses. These birds do not usually develop clinical disease, but shed large amounts of virus in their faeces (1). The highly pathogenic avian (HPAI) influenza virus H5N1, on the other hand, is primarily shed via the airways, especially in poultry (2).

Infection with influenza A viruses causes two main forms of disease distinguished by high and low virulence. Although most low pathogenic AI (LPAI) viruses cause only mild disease in poultry, LPAI strains have the potential to mutate to HPAI viruses following introduction to poultry populations. HPAI viruses, on the other hand, induce a serious, highly contagious disease in poultry and other captive birds. All HPAI epidemics recorded so far have been of the hemagglutinin subtypes H5 or H7.

Wild migratory birds have been suggested to play a major role in the dissemination and spread of HPAI viruses over long distances (3, 4). Virus detections in wild birds mainly occur in migratory duck species, swans, sea gulls and birds of prey. HPAI has never been discovered in the wild birds surveillance in Norway.

#### Aims

The aim of the national surveillance programme for AI in wild birds is to study and understand the threats posed by wild birds in relation to influenza viruses of avian origin, with special emphasis on H5 and H7 viruses.

#### Materials and methods

#### Sampling

In 2019, the programme for wild birds consisted of molecular (PCR) screening of cloacal and oropharyngeal swabs from healthy birds shot during the 2019 hunting season, and from live birds sampled during ringing. Sampling equipment consisted of flocked swabs and tubes containing virus transport medium for viral sampling, and was sent to hunters in the county of Rogaland, Østfold, Hedmark and Trøndelag. Choice of regions was based on relative density of poultry farms in the area, and their overlap with the flyways and resting areas of many species of waterfowl (5). Choice of hunters was based on their proficiency during previous hunting seasons. Sampling equipment was also sent to two ornithologists in the Oslo area, who performed sampling during the process of ringing birds. All samplers were given written instructions on how to collect samples, and were requested to fill in registration forms for individual birds. Directly after sampling, swabs were placed in transport medium and mailed overnight to the Norwegian Veterinary Institute in Oslo. Samples were either processed immediately or frozen at -70 °C upon arrival. Altogether, 16 species of wild birds were sampled in 2019 as shown in Table 1.

#### Analyses

Upon arrival in the laboratory, samples were registered and screened using a real-time reverse transcriptase polymerase chain reaction (rRT-PCR). The screening rRT-PCR used was a pan-influenza A virus rRT-PCR (6) recommended by the European Union reference laboratory for AI (Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy), that can reveal the presence of all subtypes of influenza type A viruses. However, the method does not distinguish which hemagglutinin (HA) or neuraminidase (NA) subtype is present in influenza positive samples. Therefore, the samples found positive in the initial pan-influenza A virus rRT-PCR were further tested, using H5 and H7 specific PCRs (6).

#### **Results and discussion**

In total, samples from 511 wild birds were analysed (Table 1, Figure 1) for the presence of influenza A virus. Results showed that 34 (6.7 %) birds were positive for influenza A virus.

Proportions of influenza A virus detected in different species of waterfowl during surveillance were common teal (*Anas crecca*) 18.2 % (10/55), mallard (*Anas platyrhynchos*) 9.6 % (18/187), Eurasian wigeon (*Anas penelope*) 8.3 % (5/60), and great black-backed gull (*Larus marinus*) 16.7 % (1/6).

All influenza A positive samples were further tested for the presence of subtype H5 and H7. Out of the 34 influenza A positive samples, one sample was H5 positive, whereas no samples were H7 positive. The H5 positive sample was collected from a mallard, and was negative for neuraminidase subtype N1. Sequencing of the HA genes identified the virus as low pathogenic (LPAI).

| Species                                        | No.    | InfA     | InfA     | H5       | H7       |
|------------------------------------------------|--------|----------|----------|----------|----------|
|                                                | tested | negative | positive | positive | positive |
| Mallard (Anas platyrhynchos)                   | 187    | 169      | 18       | 1        | 0        |
| Eurasian wigeon (Anas penelope)                | 60     | 55       | 5        | 0        | 0        |
| Common teal (Anas crecca)                      | 55     | 45       | 10       | 0        | 0        |
| Common scoter (Melanitta nigra)                | 10     | 10       | 0        | -        | -        |
| Common goldeneye (Bucephala clangula)          | 9      | 9        | 0        | -        | -        |
| Red-breasted merganser (Mergus serrator)       | 8      | 8        | 0        | -        | -        |
| Tufted duck (Aythya fuligula)                  | 2      | 2        | 0        | -        | -        |
| Greylag goose (Anser anser)                    | 36     | 36       | 0        | -        | -        |
| Pink-footed goose (Anser brachyrhynchys)       | 25     | 25       | 0        | -        | -        |
| Barnacle goose (Branta Ieucopsis)              | 4      | 4        | 0        | -        | -        |
| Canada goose (Branta canadensis)               | 2      | 2        | 0        | -        | -        |
| Lesser black-backed gull (Larus fuscus)        | 46     | 46       | 0        | -        | -        |
| Black-headed gull (Chroicocephalus ridibundus) | 29     | 29       | 0        | -        | -        |
| Common gull (Larus canus)                      | 26     | 26       | 0        | -        | -        |
| Great black-backed gull (Larus marinus)        | 6      | 5        | 1        | 0        | 0        |
| European herring gull (Larus argentatus)       | 6      | 6        | 0        | -        | -        |
| Total                                          | 511    | 477      | 34       | 1        | 0        |

Table 1. Number and species of birds tested in the surveillance programme for avian influenza in wild birds in 2019.

Since 2009, the total number of samples collected in the surveillance programme for avian influenza in wild birds was greatly reduced. In addition, suspension of the programme from 2010 to 2015 impedes the study of temporal trends in AI prevalence in wild birds at annual intervals. The prevalence of AI infection amongst wild birds tested in 2019 was relatively low compared to results from 2009 and 2010, and about the same level as the prevalence in 2016-2018. (Figure 2) (10, 11, 12).



Figure 1. Map showing regions of wild bird sampling during the 2019 surveillance programme for avian influenza in wild birds. Red colour marks counties were birds positive for influenza A were sampled, whereas pink colour marks counties with only negative results.



Figure 2. Prevalence of influenza A virus in ducks and gulls in the surveillance programme for avian influenza in wild birds from 2005-2019. Data bars show percentage ( $\pm$  95 % confidence intervals) of influenza A positive birds for each sampling year.

#### References

1. Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y. Evolution and ecology of influenza A viruses. Microbiol Rev 1992; 56: 152-79.

2. Sturm-Ramirez KM, Hulse-Post DJ, Govorka EA, Hum-berd J, Seiler P, Puthavathana P, Buranathai C, Nguyen TD, Chaisingh A, Long HT, Naipospos TSP, Chen H, Ellis TM, Guan Y, Peiris JSM, Webster RG. Are Ducks Contributing to the Endemicity of Highly Pathogenic H5N1 Influenza Virus in Asia? J Virol 2005; 79: 11269-79.

3. Olsen B, Munster VJ, Wallensten A, Waldenström J, Osterhaus ADME, Fouchier, RAM. Global patterns of influenza A virus in wild birds. Science 2006; 312(5772): 384-8

4. The global consortium for H5N8 and related influenza viruses. Role for migratory wild birds in the global spread of avian influenza H5N8. Science 2016; 354(6309): 213-17

5. Gjevre A-G, Handeland K, Jansen PA, Lyngstad TM, Ytrehus B. Risiko for smitte med høypatogen aviær influensa (HPAI) H5N1 fra ville fugler til fjørfe I Norge. Veterinærinstituttets rapportserie 1-2006. Oslo: National Veterinary Institute; 2006.

6. Spackman E, Senne DA, Myers TJ, Bulaga LL, Garber LP, Perdue ML, Lohman K, Daum LT, Suarez DL. Development of a real-time reverse transcriptase PCR assay for type A influenza virus and the avian H5 and H7 hemagglutinin subtypes. J Clin Microbiol 2002; 40(9): 3256-60.

7. David B, Handeland K, Tharaldsen J, Jonassen CM, Madslien K, Hopp P. The surveillance and control programme for avian influenza (AI) in wild birds in Norway. In: Brun E, Hellberg H, Sviland S, Jordsmyr HM (editors). Surveillance and control programmes for terrestrial and aquatic animals in Norway. Annual report 2007. Oslo: National Veterinary Institute; 2008. p. 115-9.

8. David B, Madslien K, Hjortaas MJ, Tarpai A. The surveillance and control programme for avian influenza (AI) in wild birds in Norway. In: Karlsson AC, Hellberg H, Sviland S, Jordsmyr HM (editors). Surveillance and control programmes for terrestrial and aquatic animals in Norway. Annual report 2009. Oslo: National Veterinary Institute; 2010.

9. David B, Madslien K, Germundsson A, Hopp P. The surveillance and control programme for avian influenza (AI) in wild birds in Norway. In: Hellberg H, Sviland S. Surveillance and control programmes for terrestrial and aquatic animals in Norway. Annual report 2010. Oslo: National Veterinary Institute; 2011.

### Scientifically ambitious, forward-looking and cooperatively oriented - for integrated health



www.vetinst.no

